28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие материалы имеют меньшую теплопроводность

Теплопроводность утеплителей — сравнительная таблица

В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.

Зачем нужна теплоизоляция?

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

Основные требования, предъявляемые к теплоизоляционным материалам:

  • Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

Таблица теплопроводности материалов

  • Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

  • Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

  • Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.

Достоинства и недостатки утеплителей

  1. Пенополиуретан на сегодняшний день самый эффективный утеплитель.

Виды ППУ

Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

  1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

  1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

  1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

Недостатки: более высокая стоимость, по сравнению с аналогами.

  1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.

Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

  1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

  1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

Заключение

Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

Читать еще:  Инновации в отделочных материалах

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

Рассчитывать придется все ограждающие конструкции

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Коэффициенты теплопроводности различных материалов. Сравнение теплопроводности строительных материалов — изучаем важные показатели

Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами).

Основные значения коэффициентов теплопроводности из СНиП II-3-79* (приложение 2) и из СП 50.13330.2012 СНиП 23-02-2003.

Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП 50.13330.2012. Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.

Обратите внимание на рост теплопроводности в зависимости от условий влажности.

Расчет теплопотерь дома

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Теплопотери через ограждающие конструкции

0,5 м / 0,16 Вт/(м×°C) = 3,125 м2×°C/Вт

(10 м ширина × 7 м высота × 4 стороны) — (16 окон × 2,5 м2) = 280 м2 — 40 м2 = 240 м2

1 / 3,125 м2×°C/Вт = 0,32 Вт / м2×°C

0,32 Вт / м2×°C × 240 м2 × 40 °C = 3072 Вт

Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери.

3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

3072 Вт × 24 ч = 73,728 кВт×ч

Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м2×°C × 240 м2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП. Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета. Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Теплопотери через вентиляцию

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м3

Плотность воздуха при температуре +20°C 1,2047 кг/м3. Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м3 × 1,2047 кг/м3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Теплопотери через канализацию

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м3. Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м3 × 15 м3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

Заключение

В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.

Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом. Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.

Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.

Таблица теплопроводности строительных материалов необходима при проектировании защиты здания от теплопотерь согласно нормативам СНиП от 2003 года под номером 23-02. Этими мероприятиями обеспечивается снижение эксплуатационного бюджета, поддержание круглогодичного комфортного микроклимата внутри помещений. Для удобства пользователей все данные сведены в таблицы, даны параметры для нормальной эксплуатации, условий повышенной влажности, так как, некоторые материалы при увеличении этого параметра резко снижают свойства.

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м 2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Чтобы правильно организовать утепление стен, потолка и пола помещений нужно знать определённые особенности и свойства материалов. От качественного подбора необходимых значений напрямую зависит тепловая устойчивость вашего дома, ведь ошибившись, в первоначальных расчётах вы рискуете сделать утепление здания неполноценным. В помощь вам предоставляется подробная таблица теплопроводности строительных материалов, описанная в этой статье.

Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.

Подробная таблица теплопроводности строительных материалов

Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

Ссылка на основную публикацию
Adblock
detector
×
×